Short-Time Expansions for Call Options on Leveraged ETFs Under Exponential Lévy models With Local Volatility
نویسندگان
چکیده
In this article, we consider the small-time asymptotics of options on a Leveraged Exchange-Traded Fund (LETF) when the underlying Exchange Traded Fund (ETF) exhibits both local volatility and jumps of either finite or infinite activity. Our main results are closed-form expressions for the leading order terms of off-the-money European call and put LETF option prices, near expiration, with explicit error bounds. We show that the price of an out-of-the-money European call on a LETF with positive (negative) leverage is asymptotically equivalent, in short-time, to the price of an out-of-the-money European call (put) on the underlying ETF, but with modified spot and strike prices. Similar relationships hold for other offthe-money European options. In particular, our results suggest a method to hedge off-the-money LETF options near expiration using options on the underlying ETF. Finally, a second order expansion for the corresponding implied volatilities is also derived and illustrated numerically.
منابع مشابه
Crooked Volatility Smiles: Evidence from Leveraged and Inverse ETF Options
We find that leverage in exchange traded funds (ETFs) can affect the “crookedness” of volatility smiles. This observation is consistent with the intuition that return shocks are inversely correlated with volatility shocks – resulting in more expensive out-of-the-money put options and less expensive out-of-the-money call options. We show that the prices of options on leveraged and inverse ETFs c...
متن کاملThe Small-maturity Implied Volatility Slope for Lévy Models
We consider the at-the-money strike derivative of implied volatility as the maturity tends to zero. Our main results quantify the growth of the slope for infinite activity exponential Lévy models. As auxiliary results, we obtain the limiting values of short maturity digital call options, using Mellin transform asymptotics. Finally, we discuss when the at-the-money slope is consistent with the s...
متن کاملShort-time asymptotics for the implied volatility skew under a stochastic volatility model with Lévy jumps
The implied volatility slope has received relatively little attention in the literature on short-time asymptotics for financial models with jumps, despite its importance in model selection and calibration. In this paper, we fill this gap by providing high-order asymptotic expansions for the at-the-money implied volatility slope of a rich class of stochastic volatility models with independent st...
متن کاملNew approximations in local volatility models
For general time-dependent local volatility models, we propose new approximation formulas for the price of call options. This extends previous results of [BGM10b] where stochastic expansions combined with Malliavin calculus were performed to obtain approximation formulas based on the local volatility At The Money. Here, we derive alternative expansions involving the local volatility at strike. ...
متن کاملSmall-Maturity Asymptotics for the At-The-Money Implied Volatility Slope in Lévy Models
We consider the at-the-money (ATM) strike derivative of implied volatility as the maturity tends to zero. Our main results quantify the behaviour of the slope for infinite activity exponential Lévy models including a Brownian component. As auxiliary results, we obtain asymptotic expansions of short maturity ATM digital call options, using Mellin transform asymptotics. Finally, we discuss when t...
متن کامل